In this paper, we take a significant step towards real-world applicability of monocular neural avatar reconstruction by contributing InstantAvatar, a system that can reconstruct human avatars from a monocular video within seconds, and these avatars can be animated and rendered at an interactive rate. To achieve this efficiency we propose a carefully designed and engineered system, that leverages emerging acceleration structures for neural fields, in combination with an efficient empty space-skipping strategy for dynamic scenes. We also contribute an efficient implementation that we will make available for research purposes. Compared to existing methods, InstantAvatar converges 130x faster and can be trained in minutes instead of hours. It achieves comparable or even better reconstruction quality and novel pose synthesis results. When given the same time budget, our method significantly outperforms SoTA methods. InstantAvatar can yield acceptable visual quality in as little as 10 seconds training time.
translated by 谷歌翻译
State-of-the-art 3D semantic segmentation models are trained on the off-the-shelf public benchmarks, but they often face the major challenge when these well-trained models are deployed to a new domain. In this paper, we propose an Active-and-Adaptive Segmentation (ADAS) baseline to enhance the weak cross-domain generalization ability of a well-trained 3D segmentation model, and bridge the point distribution gap between domains. Specifically, before the cross-domain adaptation stage begins, ADAS performs an active sampling operation to select a maximally-informative subset from both source and target domains for effective adaptation, reducing the adaptation difficulty under 3D scenarios. Benefiting from the rise of multi-modal 2D-3D datasets, ADAS utilizes a cross-modal attention-based feature fusion module that can extract a representative pair of image features and point features to achieve a bi-directional image-point feature interaction for better safe adaptation. Experimentally, ADAS is verified to be effective in many cross-domain settings including: 1) Unsupervised Domain Adaptation (UDA), which means that all samples from target domain are unlabeled; 2) Unsupervised Few-shot Domain Adaptation (UFDA) which means that only a few unlabeled samples are available in the unlabeled target domain; 3) Active Domain Adaptation (ADA) which means that the selected target samples by ADAS are manually annotated. Their results demonstrate that ADAS achieves a significant accuracy gain by easily coupling ADAS with self-training methods or off-the-shelf UDA works.
translated by 谷歌翻译
Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-F method to collect related features with similar importance into one task, which cannot provide more diversified tasks for knowledge transfer. Thus, this paper devises a new EMT algorithm for FS in high-dimensional classification, which first adopts different filtering methods to produce multiple tasks and then modifies a competitive swarm optimizer to efficiently solve these related tasks via knowledge transfer. First, a diversified multiple task generation method is designed based on multiple filtering methods, which generates several relevant low-dimensional FS tasks by eliminating irrelevant features. In this way, useful knowledge for solving simple and relevant tasks can be transferred to simplify and speed up the solution of the original high-dimensional FS task. Then, a competitive swarm optimizer is modified to simultaneously solve these relevant FS tasks by transferring useful knowledge among them. Numerous empirical results demonstrate that the proposed EMT-based FS method can obtain a better feature subset than several state-of-the-art FS methods on eighteen high-dimensional datasets.
translated by 谷歌翻译
Multi-modal and multi-hop question answering aims to answer a question based on multiple input sources from different modalities. Previous methods retrieve the evidence separately and feed the retrieved evidence to a language model to generate the corresponding answer. However, these methods fail to build connections between candidates and thus cannot model the inter-dependent relation during retrieval. Moreover, the reasoning process over multi-modality candidates can be unbalanced without building alignments between different modalities. To address this limitation, we propose a Structured Knowledge and Unified Retrieval Generation based method (SKURG). We align the sources from different modalities via the shared entities and map them into a shared semantic space via structured knowledge. Then, we utilize a unified retrieval-generation decoder to integrate intermediate retrieval results for answer generation and adaptively determine the number of retrieval steps. We perform experiments on two multi-modal and multi-hop datasets: WebQA and MultimodalQA. The results demonstrate that SKURG achieves state-of-the-art performance on both retrieval and answer generation.
translated by 谷歌翻译
Explainability of Graph Neural Networks (GNNs) is critical to various GNN applications but remains an open challenge. A convincing explanation should be both necessary and sufficient simultaneously. However, existing GNN explaining approaches focus on only one of the two aspects, necessity or sufficiency, or a trade-off between the two. To search for the most necessary and sufficient explanation, the Probability of Necessity and Sufficiency (PNS) can be applied since it can mathematically quantify the necessity and sufficiency of an explanation. Nevertheless, the difficulty of obtaining PNS due to non-monotonicity and the challenge of counterfactual estimation limits its wide use. To address the non-identifiability of PNS, we resort to a lower bound of PNS that can be optimized via counterfactual estimation, and propose Necessary and Sufficient Explanation for GNN (NSEG) via optimizing that lower bound. Specifically, we employ nearest neighbor matching to generate counterfactual samples for the features, which is different from the random perturbation. In particular, NSEG combines the edges and node features to generate an explanation, where the common edge explanation is a special case of the combined explanation. Empirical study shows that NSEG achieves excellent performance in generating the most necessary and sufficient explanations among a series of state-of-the-art methods.
translated by 谷歌翻译
Script event prediction aims to predict the subsequent event given the context. This requires the capability to infer the correlations between events. Recent works have attempted to improve event correlation reasoning by using pretrained language models and incorporating external knowledge~(e.g., discourse relations). Though promising results have been achieved, some challenges still remain. First, the pretrained language models adopted by current works ignore event-level knowledge, resulting in an inability to capture the correlations between events well. Second, modeling correlations between events with discourse relations is limited because it can only capture explicit correlations between events with discourse markers, and cannot capture many implicit correlations. To this end, we propose a novel generative approach for this task, in which a pretrained language model is fine-tuned with an event-centric pretraining objective and predicts the next event within a generative paradigm. Specifically, we first introduce a novel event-level blank infilling strategy as the learning objective to inject event-level knowledge into the pretrained language model, and then design a likelihood-based contrastive loss for fine-tuning the generative model. Instead of using an additional prediction layer, we perform prediction by using sequence likelihoods generated by the generative model. Our approach models correlations between events in a soft way without any external knowledge. The likelihood-based prediction eliminates the need to use additional networks to make predictions and is somewhat interpretable since it scores each word in the event. Experimental results on the multi-choice narrative cloze~(MCNC) task demonstrate that our approach achieves better results than other state-of-the-art baselines. Our code will be available at \url{https://github.com/zhufq00/mcnc}.
translated by 谷歌翻译
Unsupervised Domain Adaptation (UDA) has emerged as a powerful solution for the domain shift problem via transferring the knowledge from a labeled source domain to a shifted unlabeled target domain. Despite the prevalence of UDA for visual applications, it remains relatively less explored for time-series applications. In this work, we propose a novel lightweight contrastive domain adaptation framework called CoTMix for time-series data. Unlike existing approaches that either use statistical distances or adversarial techniques, we leverage contrastive learning solely to mitigate the distribution shift across the different domains. Specifically, we propose a novel temporal mixup strategy to generate two intermediate augmented views for the source and target domains. Subsequently, we leverage contrastive learning to maximize the similarity between each domain and its corresponding augmented view. The generated views consider the temporal dynamics of time-series data during the adaptation process while inheriting the semantics among the two domains. Hence, we gradually push both domains towards a common intermediate space, mitigating the distribution shift across them. Extensive experiments conducted on four real-world time-series datasets show that our approach can significantly outperform all state-of-the-art UDA methods. The implementation code of CoTMix is available at \href{https://github.com/emadeldeen24/CoTMix}{github.com/emadeldeen24/CoTMix}.
translated by 谷歌翻译
Existing language models (LMs) predict tokens with a softmax over a finite vocabulary, which can make it difficult to predict rare tokens or phrases. We introduce NPM, the first nonparametric masked language model that replaces this softmax with a nonparametric distribution over every phrase in a reference corpus. We show that NPM can be efficiently trained with a contrastive objective and an in-batch approximation to full corpus retrieval. Zero-shot evaluation on 9 closed-set tasks and 7 open-set tasks demonstrates that NPM outperforms significantly larger parametric models, either with or without a retrieve-and-generate approach. It is particularly better on dealing with rare patterns (word senses or facts), and predicting rare or nearly unseen words (e.g., non-Latin script). We release the model and code at github.com/facebookresearch/NPM.
translated by 谷歌翻译
Self-similarity is valuable to the exploration of non-local textures in single image super-resolution (SISR). Researchers usually assume that the importance of non-local textures is positively related to their similarity scores. In this paper, we surprisingly found that when repairing severely damaged query textures, some non-local textures with low-similarity which are closer to the target can provide more accurate and richer details than the high-similarity ones. In these cases, low-similarity does not mean inferior but is usually caused by different scales or orientations. Utilizing this finding, we proposed a Global Learnable Attention (GLA) to adaptively modify similarity scores of non-local textures during training instead of only using a fixed similarity scoring function such as the dot product. The proposed GLA can explore non-local textures with low-similarity but more accurate details to repair severely damaged textures. Furthermore, we propose to adopt Super-Bit Locality-Sensitive Hashing (SB-LSH) as a preprocessing method for our GLA. With the SB-LSH, the computational complexity of our GLA is reduced from quadratic to asymptotic linear with respect to the image size. In addition, the proposed GLA can be integrated into existing deep SISR models as an efficient general building block. Based on the GLA, we constructed a Deep Learnable Similarity Network (DLSN), which achieves state-of-the-art performance for SISR tasks of different degradation types (e.g. blur and noise). Our code and a pre-trained DLSN have been uploaded to GitHub{\dag} for validation.
translated by 谷歌翻译
Most existing person re-identification methods compute the matching relations between person images across camera views based on the ranking of the pairwise similarities. This matching strategy with the lack of the global viewpoint and the context's consideration inevitably leads to ambiguous matching results and sub-optimal performance. Based on a natural assumption that images belonging to the same person identity should not match with images belonging to multiple different person identities across views, called the unicity of person matching on the identity level, we propose an end-to-end person unicity matching architecture for learning and refining the person matching relations. First, we adopt the image samples' contextual information in feature space to generate the initial soft matching results by using graph neural networks. Secondly, we utilize the samples' global context relationship to refine the soft matching results and reach the matching unicity through bipartite graph matching. Given full consideration to real-world person re-identification applications, we achieve the unicity matching in both one-shot and multi-shot settings of person re-identification and further develop a fast version of the unicity matching without losing the performance. The proposed method is evaluated on five public benchmarks, including four multi-shot datasets MSMT17, DukeMTMC, Market1501, CUHK03, and a one-shot dataset VIPeR. Experimental results show the superiority of the proposed method on performance and efficiency.
translated by 谷歌翻译